
NO OPERATING SYSTEM REQUIRED

TEL (408) 754-4176 FAX (408) 754-4266 5750 Hellyer Avenue San Jose, California 95138 info@ReachTech.com www.ReachTech.com

The ISIS inTOUCH™ hand-held
wireless remote is a hit at the
world’s premier automotive
specialty products trade event

Background

The ISIS inTOUCH Intelligent Multiplex
System, a joint development between Littelfuse
and I Squared Engineering, replaces traditional
vehicle wiring harnesses for custom car
enthusiasts and limousine manufacturers. It
allows users to program circuits that control
electrical functions within a vehicle (for example,
starting the car, controlling interior and exterior
lights, manipulating heat controls, locking the
car). I Squared Engineering needed to add a color
touch interface without doing a tremendous
amount of research and development.

Critical Issues

To eliminate any possibility of failure due to
software bugs or inadequate testing, I Squared
Engineering wanted a pocket-sized touch screen
that did not contain a complex operating system.
According to President Chris Loubier, “I would
absolutely not use a touch screen that involved
Windows, Linux, or UNIX, or any other operating
system. I wanted something that ran bare metal
without dynamic memory allocation - the idea of
getting the blue screen of death behind the wheel
of a car is not good!”

Solution

 I Squared Engineering asked Reach to develop a
display module based on a popular 4.3” LCD size
being used by top portable gaming systems, GPS
navigation, and other hand-held devices. They
used this as the foundation for ISIS inTOUCH,

a hand-held wireless customer interface that
can control any vehicle function. While Reach
developed the 4.3” display module, I Squared
Engineering focused on their core competencies:
power control modules and associated firmware.

Results

ISIS inTOUCH was recently named Product of
the Year in the Mobile Electronics Category at
SEMA 2008, the world’s premier automotive
specialty products trade event. Loubier said,
“Seeing the wireless touch screen tied into
the ISIS distribution center thrilled editors at
SEMA. They told us, ‘This changes the game in
the restoration, aftermarket, and commercial
vehicle space.’” They started shipping their first
production units in February 2009.

See the compete ISIS solution demonstrated in
a video shot at SEMA (http://www.isispower.
com/V8_interview.php). If you are only interested
in seeing the 4.3” display module, start watching
the video at 14 minutes and 18 seconds.

PAGE ONE

Reach customer wins “Product of the Year”
in the Mobile Electronics Category at SEMA

Jay Harris, Global Director of Business Development, Automotive

Business Unit at Littelfuse demonstrates ISIS inTOUCH at SEMA.

NO OPERATING SYSTEM REQUIRED

TEL (408) 754-4176 FAX (408) 754-4266 5750 Hellyer Avenue San Jose, California 95138 info@ReachTech.com www.ReachTech.com

Should I use a full-blown, embedded operating system,
like Windows CE, CE Linux or QNX?

There is a common belief that still lingers:
that a full-blown operating system is required to
implement a modern graphical color touch interface.
Certainly Microsoft would have you believe this is
the case. Today, there are other options.

If you’re simply upgrading an existing product
with color touch technology, it’s not likely that a
full-blown, embedded operating system would be
your logical choice.

A complex operating system is appropriate if:

•	 You’re designing a new product and it needs
a high-level interconnection with other, similar
OS-based systems.

•	 The system will have off-the-shelf peripherals,
such as a fingerprint reader, attached to it.

•	 You’re well-versed in the operating system
you’re going to use, or are willing to commit the
time to become comfortable with it.

Considerations
Processing power: A full-blown operating system
needs a full-blown single-board computer (SBC)
to run on. If your current product is based on
a microcontroller, you have to make a major
hardware platform change.

Operating system experience: You and your
team must be (or become) familiar enough with
the operating system to make accurate risk
assessments. A typical statement of concern: “Is
there some implementation detail that I don’t know
about and don’t know I have to consider? They say
it’ll do what I need it to do, but will it? If I have a
problem, who do I call?”

Start-up and shut-down time: Boot time and
shut-down time are issues to consider. High-end
operating systems are not inherently designed to
do either of these as quickly as your application
might require.

Memory leaks: The specter of memory leaks is
almost inevitable with high-end operating systems.
Consider this issue if memory leaks could pose a
problem for your application. For the uninitiated,
memory leaks and the consequent low-level
processor abort is the major cause of PC “crashes.”

Reliability: The more code, the more bugs. It is just
that simple. Operating systems inherently have a
lot of code.

+ Advantages of embedded operating systems

Industry-standard, embedded operating systems
have their advantages. Among them:

•	 They’re industry standards.

•	 High level networking connectivity features
are built in.

•	 You can connect to centralized databases
using standard software interfaces.

•	 You can connect to PCs on a peer-to-peer
basis.

•	 They permit the use of Flash animation.

•	 They’re “future-proof.” Maybe your product
doesn’t need networking, database connectivity,
Flash, or any of that now, but, if you think those
features will be required in the future, a full-
blown operating system could be the way to go.

- Disadvantages of embedded operating systems

Some projects require the power and versatility of
high-end operating systems, but such systems also
have substantial disadvantages:

Increased complexity: Full-blown embedded
operating systems are extremely complex. Unless
you and your team already possess deep expertise
in their use, you’ll spend months gaining the
necessary knowledge and experience.

PAGE TWO

NO OPERATING SYSTEM REQUIRED

TEL (408) 754-4176 FAX (408) 754-4266 5750 Hellyer Avenue San Jose, California 95138 info@ReachTech.com www.ReachTech.com

PAGE THREE

Boot time: In most embedded applications, boot
time is a big issue. Without special programming,
full-blown operating systems require 15 – 20
seconds to boot. You can improve that, but to do so
requires an expert level of knowledge.

Shut-down issues: What happens when power
fails and the system is not shut down “gracefully”?
Is shut-down time important to your application?
If so, be aware that high-end operating systems
require substantial time to shut down correctly. As
with boot time, shut- down times can be reduced,
but doing so requires substantial know-how.

Test complexity: For an embedded test, all the
permutations of the run-time environment must be
identified and incorporated into the test suite. This
is a huge job and it’s rarely fully- accomplished,
as is obvious whenever an embedded “system“
crashes.

“Is there some implementation detail that I don’t

know about and don’t know I have to consider?

They say it’ll do what I need it to do, but will it? If I

have a problem, who do I call?”

Interface responsiveness: We have become used to
our PC’s having the occasional “hiccup,” as one of
its many background processes eats up processor
cycles. However, if your microwave oven took
varying times to respond to the “start” button,
you’d probably think it was broken, or on its last
legs. Embedded user interfaces need consistent
response times and this is more difficult to achieve
with a complex multitasking operating system.

Sample Windows CE Code Used to
Create a Frame and Add a Button

int CMainFrame::
OnCreate(LPCREATESTRUCT lpCreateStruct)

{

 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)

 return -1;

 // Add the buttons and adornments to the
CommandBar.

 if (!InsertButtons(tbButtons, nNumButtons,
IDR_MAINFRAME, nNumImages) ||

 !AddAdornments(dwAdornmentFlags))

 {

 TRACE0(“Failed to add toolbar buttons\n”);

 return -1;

 }

 return 0;

}

Read an in-depth discussion
of your Buy vs. Build choices
in our white paper, Need help
adding a graphical color control
interface to your product?
Download it at www.reachtech.

