

Analyzing Performance of
QtQuick Applications

Thomas McGuire
KDAB

thomas@kdab.com

mailto:thomas@kdab.com

Performance: Multiple Aspects

• Startup Duration
• Smooth Rendering / Frames per Second
• Responsiveness
• Boot Duration
• Power Usage
• Memory Usage

Startup Time

Startup Time - CPU Profiler

Startup Time - CPU Profiler

• Pay attention to what you measure

– Cycle count does not include time blocked!

– Compile in release mode

– Profile on target device

– Profile with cold cache

• User code and QML engine code

– QML engine part opaque

– high level tooling required

Startup Time - Meet the QML Profiler

Startup Time - Meet the QML Profiler

• Use Qt 5.4 and QtCreator 3.2
• Enable profiler in settings

– QMake CONFIG flag

– run argument

• Record only what you need

Startup Time - Example

Startup Time - 4 phases

1.Compiling

2.Creating

3.Bindings

4.Completion

– JS: Component.onCompleted

– C++: QQuickItem::componentComplete()

– Text layouting, image loading, creation of Repeater/ListView delegates, ...

Startup Time - Completion

Startup Time - Completion

●Removing fonts improved startup from 900ms to 200ms
●Completion phase shrunk considerably

Startup Time - Compilation

• Compilation phase fast, small amount of total
• Runs in a separate thread
• QtQuick Compiler pre-compiles files

– Phase reduced by ~50%

– Available since Qt 5.3 Enterprise

Startup Time - Bindings/JS

• Keep bindings simple
• Move complex code to C++
• Use QtQuick compiler if available

Startup Time - QtQuick Compiler

Startup Time - QtQuick Compiler

• Results

– Without QtQuick Compiler, Release: 1000ms

– With QtQuick Compiler, Release: 500ms, 398 instructions (w/o calls)

– With QtQuick Compiler, Debug: 5000ms, 818 instructions (w/o calls)

– C++ version, Release: 50 ms, 78 instructions (w/o calls)

• Use QtQuick Compiler if available
• Improvements in simpler code (bindings) ~15% (*)
• Move complex code to C++

Startup - Creating

• Not much one can do
• Use fewer elements in QML files
• Make sure custom items are constructed quickly

Startup - All phases

Use Loader to load views later

Startup - Summary

• Profile both C++ and QML
• Know your tools, understand their output
• Move complex JS code to C++
• Use Loaders
• Use QtQuick Compiler when available

Smooth Rendering /
Frames per Second

Rendering - Intro

• Rendering itself is rarely the culprit!

– High CPU/GPU usage from other processes or threads

– ListView scrollling instantiates new delegates

– Timers in C++ or JS, event handling in C++

– Use a CPU profiler and the QML profiler first to verify!

Rendering - Analyzing Frame Time

• See
http://qt-project.org/doc/qt-5/qtquick-visualcanvas-scenegraph-renderer.h
tml#performance
for general tips to improve render performance

• Useful visualizations with QSG_VISUALIZE

– batches

– clip

– overdraw

– changes

http://qt-project.org/doc/qt-5/qtquick-visualcanvas-scenegraph-renderer.html#performance
http://qt-project.org/doc/qt-5/qtquick-visualcanvas-scenegraph-renderer.html#performance

Rendering - Visualizations

• QSG_VISUALIZE=overdraw
• No viewport clipping and occlusion
culling in renderer!

• Make sure visible is false

Rendering - Measuring Frame Time

● QtCreator Enterprise or QSG_RENDER_TIMING=1
● QSG_RENDER_LOOP=threaded
● Measures CPU time
● No animations running -> 0 FPS

Rendering - Measuring Frame Time

• GUI Thread

– polish: QQuickItem::updatePolish()

● anchor and text layouting, canvas drawing, ...

– animations: Advancing all animations (binding updates!)

– lock: Posting sync request to render thread

– block/sync: Wait for render thread to call QQuickItem::updatePaintNode()

● Main/GUI thread will block while render thread busy!

Rendering - Measuring Frame Time

• Render Thread

– framedelta: 1000 / FPS

– sync: Actual QQuickItem::updatePaintNode() call

– first render: CPU render time

– final swap: Swap time

• Caveat: swap time + render time >= 16ms with 60 Hz vsync
• Caveat: Some drivers wait in first GL call of next frame, not in
glSwapBuffers()!

Rendering - apitrace

Rendering - apitrace

Rendering - apitrace

• Traces and times OpenGL calls on CPU and GPU
• Shows complete GL state, including buffers and shaders
• Useful when integrating custom items into QtQuick
• Useful when working on the scenegraph renderer itself
• Usage:

– apitrace trace to record

– qapitrace to visualize and play back

Responsiveness

Responsiveness

• Usually starts in QtQuick signal handlers like onClicked or onPressed
• Mix of JS code, property/binding updates and calls into C++
• Measure only relevant time period
• Start with QML Profiler, descent into CPU profiler if needed
• May load new view

– Similar analysis as startup time

– Loader: startup time vs reaction time

Boot Duration

Boot Duration - bootchart

Power Usage

Power Usage - powertop

Power Usage - Others

• powertop to check for process wakeups and HW power usage
• QML profiler to check for unnecessary animations
• Gammaray timer top to check for unnecessary timers

Memory Usage

Memory Usage - massif

Memory Usage - Others

• massif to track C++ heap allocations
• QML Profiler (enterprise) to track JS memory usage
• QML engine: ?

Thank you!

Questions?

Thomas McGuire - KDAB - thomas@kdab.com

mailto:thomas@kdab.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

