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Performance: Multiple Aspects

• Startup Duration
• Smooth Rendering / Frames per Second
• Responsiveness
• Boot Duration
• Power Usage
• Memory Usage



  

Startup Time



  

Startup Time - CPU Profiler



  

Startup Time - CPU Profiler

• Pay attention to what you measure

– Cycle count does not include time blocked!

– Compile in release mode

– Profile on target device

– Profile with cold cache

• User code and QML engine code

– QML engine part opaque

– high level tooling required



  

Startup Time - Meet the QML Profiler



  

Startup Time - Meet the QML Profiler

• Use Qt 5.4 and QtCreator 3.2
• Enable profiler in settings

– QMake CONFIG flag

– run argument

• Record only what you need



  

Startup Time - Example



  

Startup Time - 4 phases

1.Compiling

2.Creating

3.Bindings

4.Completion

– JS: Component.onCompleted

– C++: QQuickItem::componentComplete()

– Text layouting, image loading, creation of Repeater/ListView delegates, ...



  

Startup Time - Completion



  

Startup Time - Completion

●Removing fonts improved startup from 900ms to 200ms
●Completion phase shrunk considerably



  

Startup Time - Compilation

• Compilation phase fast, small amount of total
• Runs in a separate thread
• QtQuick Compiler pre-compiles files

– Phase reduced by ~50%

– Available since Qt 5.3 Enterprise



  

Startup Time - Bindings/JS

• Keep bindings simple
• Move complex code to C++
• Use QtQuick compiler if available



  

Startup Time - QtQuick Compiler



  

Startup Time - QtQuick Compiler

• Results

– Without QtQuick Compiler, Release: 1000ms

– With QtQuick Compiler, Release: 500ms, 398 instructions (w/o calls)

– With QtQuick Compiler, Debug: 5000ms, 818 instructions (w/o calls)

– C++ version, Release: 50 ms, 78 instructions (w/o calls)

• Use QtQuick Compiler if available
• Improvements in simpler code (bindings) ~15% (*)
• Move complex code to C++



  

Startup - Creating

• Not much one can do
• Use fewer elements in QML files
• Make sure custom items are constructed quickly



  

Startup - All phases

Use Loader to load views later



  

Startup - Summary

• Profile both C++ and QML
• Know your tools, understand their output
• Move complex JS code to C++
• Use Loaders
• Use QtQuick Compiler when available



  

Smooth Rendering /
Frames per Second



  

Rendering - Intro

• Rendering itself is rarely the culprit!

– High CPU/GPU usage from other processes or threads

– ListView scrollling instantiates new delegates

– Timers in C++ or JS, event handling in C++

– Use a CPU profiler and the QML profiler first to verify!



  

Rendering - Analyzing Frame Time

• See 
http://qt-project.org/doc/qt-5/qtquick-visualcanvas-scenegraph-renderer.h
tml#performance
for general tips to improve render performance

• Useful visualizations with QSG_VISUALIZE

– batches

– clip

– overdraw

– changes

http://qt-project.org/doc/qt-5/qtquick-visualcanvas-scenegraph-renderer.html#performance
http://qt-project.org/doc/qt-5/qtquick-visualcanvas-scenegraph-renderer.html#performance


  

Rendering - Visualizations

• QSG_VISUALIZE=overdraw
• No viewport clipping and occlusion 
culling in renderer!

• Make sure visible is false



  

Rendering - Measuring Frame Time

● QtCreator Enterprise or QSG_RENDER_TIMING=1 
● QSG_RENDER_LOOP=threaded
● Measures CPU time
● No animations running -> 0 FPS



  

Rendering - Measuring Frame Time

• GUI Thread

–  polish: QQuickItem::updatePolish()

● anchor and text layouting, canvas drawing, ...

–  animations: Advancing all animations (binding updates!)

–  lock: Posting sync request to render thread

–  block/sync: Wait for render thread to call QQuickItem::updatePaintNode()

● Main/GUI thread will block while render thread busy!



  

Rendering - Measuring Frame Time

• Render Thread

–  framedelta: 1000 / FPS

–  sync: Actual QQuickItem::updatePaintNode() call

–  first render: CPU render time

–  final swap: Swap time

• Caveat: swap time + render time >= 16ms with 60 Hz vsync
• Caveat: Some drivers wait in first GL call of next frame, not in 
glSwapBuffers()!



  

Rendering - apitrace



  

Rendering - apitrace



  

Rendering - apitrace

• Traces and times OpenGL calls on CPU and GPU
• Shows complete GL state, including buffers and shaders
• Useful when integrating custom items into QtQuick
• Useful when working on the scenegraph renderer itself
• Usage: 

– apitrace trace to record

– qapitrace to visualize and play back



  

Responsiveness



  

Responsiveness

• Usually starts in QtQuick signal handlers like onClicked or onPressed
• Mix of JS code, property/binding updates and calls into C++
• Measure only relevant time period
• Start with QML Profiler, descent into CPU profiler if needed
• May load new view

– Similar analysis as startup time

– Loader: startup time vs reaction time



  

Boot Duration



  

Boot Duration - bootchart



  

Power Usage



  

Power Usage - powertop



  

Power Usage - Others

• powertop to check for process wakeups and HW power usage
• QML profiler to check for unnecessary animations
• Gammaray timer top to check for unnecessary timers



  

Memory Usage



  

Memory Usage - massif



  

Memory Usage - Others

• massif to track C++ heap allocations
• QML Profiler (enterprise) to track JS memory usage
• QML engine: ?



  

Thank you!

Questions?

Thomas McGuire - KDAB - thomas@kdab.com

mailto:thomas@kdab.com
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