
© Copyright Reach Technology Inc. 2003-2010 Page 1 of 7
All Rights Reserved

SLCD Application Note

In System Programming Example for:

SLCD+, SLCD43, and SLCD6 (f/w versions 2.7.0 and later)
SLCD5, SLCD5+ (f/w versions 1.2 and later)

 Reach Technology, Inc.
sales@reachtech.com

(503) 675-6464
April 19, 2011

1 Overview
This Application Note describes a 'C' program demonstrating In-System-Programming of SLCD family

bitmap and macro data via a PC COM port. The 'C' code is written to be easily ported to run on a target

system's "host" processor to reprogram the SLCD. The program is implemented as a Windows Console

Application that is executed from a Command Prompt window under Windows XP (or later) and uses

command line arguments to specify the *PC COM port, the name of a ".bin" (or ".fwu") file (produced by

the BMPLoad.exe program separately distributed by Reach), and whether or not the file contains

firmware. Distributed with this Application Note is source code for the program, a M/S Visual Studio

2003 project for recompiling it, and small ".bin" files that can be used to verify operation of the program.

Firmware updates are also supported for the SLCD+, SLCD6, and SLCD43 controllers.

*Note: for newer PC’s that have USB ports instead of COM ports, use a USB-Serial Adapter based on the
FTDI chipset and install the appropriate drivers from here. DigiKey has some adapters you can order
here.

http://www.ftdichip.com/Drivers/VCP.htm
http://search.digikey.com/scripts/DkSearch/dksus.dll?Cat=3670173&k=ftdi

2 Contents
This Application Note is distributed as a ".zip" archive file; open the file with Windows Explorer
and copy its contents to a folder on your hard drive (for example, C:_slcd). This folder should
now look something like:

"ConLoad" contains the source code and a M/S Visual Studio 2003 "solution" for examining the
program, recompiling it, debugging it, etc.

"ConLoad.exe" is a Windows Console Application program, built from the aforementioned
source code and solution in the Release configuration.

"ConsoleLoaderAppNote.pdf" is this Application Note.

Folder “files_8bit” contains, “data_8bit.bin”, the files used with BMPload to build it, and
“crc_8bit.txt”; these files are used for testing the program on SLCD6 or SLCD+ products
running 8-bit color firmware.

Folder “files_hiColor” contains similar files for testing SLCD43, SLCD6, or SLCD+ products
running high color firmware.

Folders “files_SLCD5” and “files_SLCD5+” contain similar files for testing SLCD5 or SLCD5+
products.

© Copyright Reach Technology Inc. 2003-2010 Page 2 of 7
All Rights Reserved

3 Using the Program
In order to verify the program runs on your PC, open a Command Prompt window, cd to the
folder into which you copied this Application Note, and execute the program without any
command line arguments. This will produce an ERROR message followed by a USAGE
message, which identifies the program's expected command line arguments:

To demonstrate the program's functionality, connect an SLCD Display Module to one of the PC's
COM ports (use USB-Serial Adapter if required). The program assumes it will have exclusive
use of the COM port and that the SLCD is configured to run at 115200 baud. Be forewarned: the
SLCD's existing bitmap, macro, and font data will be overwritten. Assuming your PC is using
COM8 to control the SLCD (through a USB-Serial Adapter, which can run at 460800 baud) and
the SLCD model is SLCD43 (uses high color firmware), you would run the program with the
command line arguments shown below and see something like this:

© Copyright Reach Technology Inc. 2003-2010 Page 3 of 7
All Rights Reserved

Next, verify the CRC of the data in the SLCD now matches that in the appropriate "crc_hc.txt"
file: open the file “files_hiColor\crc_hc.txt” and note the CRC (0x3D16); then, open a terminal
connection to SLCD and enter the command, "*CEXT" and press Enter. The result should
match. Now, use the "ls" and "lsmac" commands to examine the SLCD contents. You should
see something like this on your terminal:

© Copyright Reach Technology Inc. 2003-2010 Page 4 of 7
All Rights Reserved

4 Examining the Program
All the source code for the program is in the "ConLoad" folder. Viewing its contents with
Windows Explorer, you should see something like:

"Debug", "Release", "ConLoad.ncb", "ConLoad.sln", "ConLoad.suo", and "ConLoad.vcproj" are
used by M/S Visual Studio 2003. The rest of the folder is source code for the program. It is
heavily commented, so it can be used as a reference design.

• "main.c" is where it all begins. This code handles the command line arguments and
executes the program, using functions from the standard C Run Time Library and the
other modules.

• "serIO.c" and "serIO.h" make up the module that handles opening (and closing) the PC
COM port, configuring it, and sending and receiving serial data.

• "slcd.c" and "slcd.h" make up the module that handles sending SLCD commands and
receiving SLCD responses.

• "isp.c" and "isp.h" make up the module that handles the basic operations of In-System-
Programming.

• "commonDefs.h" is a 'C' header file containing common definitions used by the other
modules.

© Copyright Reach Technology Inc. 2003-2010 Page 5 of 7
All Rights Reserved

© Copyright Reach Technology Inc. 2003-2010 Page 6 of 7
All Rights Reserved

5 Understanding the Program

The program is designed to support the following SLCD Controller Board models:

• SLCD43, SLCD6, SLCD+ (collectively referred to in the code as SLCDx)

• SLCD5

• SLCD5+

Reading through the code in main(), one can easily follow the basic flow of the program, which
can be summarized as:

• Establish communications and determine SLCD model and firmware version

• Make sure the data in the “.BIN” file will fit in the SLCD’s available Flash and is
properly formatted for the SLCD model.

• Erase enough Flash sectors to hold the data

• Read the data from the .BIN file and write it into Flash, except for the 1st 2 bytes, which
need to remain erased until after the rest of the written data is validated.

• Validate the data written to Flash -- see ISP_ValidateExtFlash() in isp.c for details:

o Process it in chunks of upto 8K bytes (2^16 bits == 8K bytes), by comparing the
16-bit CRC of a chunk read from the .BIN file to the 16-Bit CRC of the
corresponding chunk in Flash.

o In the case of the 1st chunk read from the .BIN file, the 1st 2 bytes of the
containing RAM buffer are replaced with 0xFF to match the 1st 2 unwritten (ie:
erased) bytes of Flash, before the buffer is CRC’d.

o Rewind the file and read in the 1st 2 bytes, and then write them to Flash (these
form a magic value used to indicate the Flash data has been validated).

• If the .BIN file contained a firmware upgrade (SLCDx only), tell the SLCD to upgrade its
firmware.

• If the model is not an SLCDx, tell it to reload the data from Flash into the active RAM
copy.

• Declare success and quit.

© Copyright Reach Technology Inc. 2003-2010 Page 7 of 7
All Rights Reserved

6 Porting the Program
The program was developed to be easily ported to a target embedded system, assuming the
standard C Runtime Library is available. Some parts of the implementation may need to be
changed based on how well stdio is supported by the target system's development environment,
but the bulk of the porting effort involves serial I/O.

The code in "serIO.c" and "serIO.h" will have to be changed to support the target system's serial
port hardware. The program assumes that serial I/O responds to Xon/Xoff flow control when
transmitting, that SERIO_GetChar() will timeout after SERIO_READ_TIMEOUT_MSEC if a
char/byte is not available, and that SERIO_PutChar() and SERIO_PutString() block until
transmission completes.

The code in "slcd.c" and "slcd.h" should require little or no change, as it uses the SERIO_xxx()
functions to communicate with the SLCD. The constant, SLCD_MAXBYTES, is based on the
maximum SLCD command size, and should not be changed.

The code in "isp.c" and "isp.h" should require little change, so long as the aforementioned serial
I/O assumptions are met. If Xon/Xoff Tx Flow Control is not available, the implementation of
ISP_WriteFileToExtFlash() will require a significant change. The existing implementation uses
one "bdld" command to tell the SLCD to receive the whole binary data image, and then sends the
image data a chunk at a time until it's all been sent. Without Xon/Xoff Tx Flow Control, it will
be necessary to send a "bdld" command before each chunk and wait for it to complete, repeating
until all the data has been sent.

	1 Overview
	2 Contents
	3 Using the Program
	4 Examining the Program
	5 Understanding the Program
	6 Porting the Program

