
Application Note: AN-121 01/28/2016 Page 1 of 13

Application Note AN-121

Setting up the Ethernet I/O Agent

Reach Technology, Inc.

01/28/2016

© Copyright Reach Technology Inc. 2016
All Rights Reserved

Reach Technology Inc.

www.reachtech.com

 Sales: 510-770-1417 x112
sales@reachtech.com

Technical Support: 503-675-6464

techsupport@reachtech.com

http://www.reachtech.com/
mailto:sales@reachtech.com
mailto:techsupport@reachtech.com

Application Note: AN-121 01/28/2016 Page 2 of 13

1 Overview

This application note describes how to configure the Ethernet I/O agent (eio-agent) on a G2 Display
Module.

The basic function of the application is to provide level indicators for water, fuel and temperature, an OIL
LED, a speedometer, a Start button and a Stop button. When either button is pressed or released,
messages are sent to the host controller via the I/O agent. When host controller messages are received
for any of the indicators, the specified value is shown on that indicator.

Application Note: AN-121 01/28/2016 Page 3 of 13

2 QML Application Screen

The QML GUI application (AgentSampleProject) contains VerticalLevelIndicator elements for Water level,
Fuel level, and temperature. There are two ImageButton elements for Start and Stop buttons, an
LEDLight element for an OIL LED, and a Speedometer element.

The screen shown is from a 7” display module. The 4.3” display is similar.

Figure 1 – QML Application Screen

Application Note: AN-121 01/28/2016 Page 4 of 13

3 Application Messages

The table below lists the messages used in this application.

Table 1 – Application Messages

Description Direction TIO Message QML Message

Water Level Incoming “w=<value>” “water.value=<value>”

Fuel Level Incoming “f=<value>” “fuel.value=<value>”

Temp Level Incoming “t=<value>” “temp.value=<value>”

OIL LED Incoming “o=<value>” “oil.on=<value>”

Speedometer Incoming “s=<value>” “speed.value=<value>”

Start Button Outgoing “st=<value>” “Start.state=<value>”

Stop Button Outgoing “sp=<value>” “Stop.state=<value>”

3.1 I/O Agent Messages

The messages received by the I/O agent can be application-specific, and the I/O agent may translate
them from one form to another. For this application note, it is assumed that the I/O agent passes
messages it receives straight through without translation.

Note that all messages from the host controller must be terminated with a new-line (ASCII LF, 0x0A).

3.2 TIO Messages

The “Incoming” TIO messages shown in Table 1 are as received from the I/O agent.

The translation between TIO messages and QML messages is done as specified in the project’s
“translate.txt” file. Note that the I/O agent could easily just translate the messages it receives from
the host controller directly into the QML form, and then the translations defined in translate.txt would
not be needed (although the I/O agent would still send the messages to the tio-agent).

3.3 QML Messages

Each QML message is in the “object.property=value” format that the QML viewer uses. The “object”
comes from the “objectName” property assigned to the QML element, and the “property” is the
settable property as defined by the element itself.

Application Note: AN-121 01/28/2016 Page 5 of 13

4 Example Message Flows

4.1 Host Controller to Display Module

An example message to set the Water level indicator to a value of 7 would look like:

w=7

The I/O agent sends this to the tio-agent. The tio-agent receives this message and uses rules in
translate.txt to translate it into the QML message:

water.value=7

4.2 Display Module to Host Controller

The user presses the Start button, and the QML Viewer sends this message (per the GUI code):

start.value=1

The tio-agent uses rules in translate.txt to translate this message into:

st=1

and sends this message to the I/O agent, which then sends it to the host controller.

Application Note: AN-121 01/28/2016 Page 6 of 13

5 Setup

This application note assumes that you have:

 The G2 Dev kit installed and running.

 G2Link installed on your Windows system.

 The Reach Linux VM installed and running.

Application Note: AN-121 01/28/2016 Page 7 of 13

6 Initial Testing

The QML application can be tested with the standard SIO agent running. You would just send any of the
TIO Messages from Table 1 with a terminal emulator connected to the RS232 port on the Dev Kit. If you
press one of the buttons, you will see the listed start or stop message. This allows you to verify that the
QML application has been downloaded and is running correctly.

To download the QML application, start G2Link, click on Select Serial Port and select the COM

port connected to the Debug port on the G2 Dev Kit, and click on Apply and Close. You should see

the remaining buttons get enabled and the IP Address filled in with the G2 module’s setting.

Click on Publish and Run, click on Browse, navigate to the AgentSampleProject folder for your

display module, click OK, and then click Go to download the application to the G2 module. Once the

application is downloaded, the QML viewer will restart and you should see the application screen on the
display module.

Connect a terminal emulator to UART1/RS232 on the G2 Dev Kit (115200 baud, N81). Now you can type

in any of the TIO Messages. For example, entering w=5 followed by the <enter> key will set the Water

level indicator to 5. Press the Start button and you will see the message st=1, and when you release

the button you will see the message st=0.

Application Note: AN-121 01/28/2016 Page 8 of 13

7 Building and Installing reach-eio-agent

7.1 Building

1. Copy the reach-eio-agent directory to your Linux VM.

2. Open the project file (reach-eio-agent.pro) with Qt Creator.

3. If prompted, Configure Project for G2H1.

4. Click on Build->Build All.

5. The executable will be in your Projects directory, in in the directory build-reach-eio-agent-

G2H1-Debug, and is named eio-agent.

7.2 Installing

1. On the VM desktop, click on the Connect to Server icon.

2. In the Server field, enter the IP address of your G2 Dev Kit (as shown in G2Link).

3. In the Type pull-down, select Windows share.

4. Leave the other fields blank and click Connect.

5. In the browser window that opens, double-click on app, then bin.

6. Delete any existing file named eio-agent.

7. Copy the new file eio-agent into the bin directory.

8. On the PC desktop, using G2Link, click on View Files in Explorer.

9. In the browser window that opens, double-click on config, then on init.d.

10. Copy the file Scripts/eio-agent to init.d.

11. Close the browser window.

7.3 Startup Scripts

1. In G2Link, click on View->Advanced View.

2. In the bottom text window, use the command “mv /etc/rcS.d/S99sio-agent .” to disable

the sio-agent. (Note that the script may reside in /etc/rc5.d on some releases. If so, simple

change the references below accordingly.)

3. Make a softlink in /etc/rcS.d to the eio-agent script with the commands (in the bottom text

window):
cd /etc/rcS.d
ln –s ../init.d/eio-agent S99eio-agent

4. Use the command “chmod 755 /application/bin/eio-agent” to set the file permissions

on the eio-agent.

5. Use the command reboot to restart the module with the eio-agent running.

Application Note: AN-121 01/28/2016 Page 9 of 13

8 Final Testing

Use telnet to send and receive the same messages as above. The IP address of the display module is
shown in G2Link. The default port is 7880 (as defined in the eio-agent script). Be sure to configure your
telnet agent to add LF characters to the end of the lines.

Application Note: AN-121 01/28/2016 Page 10 of 13

9 Source Code

9.1 QML Application

The QML Application code is the contents of the file mainview.qml in the QML project folder. Points
of interest are the “objectName” fields in all elements that receive value settings, and the use of
“connection.sendMessage()” in the buttons to send messages to the host controller.

The code shown below is from a 7” display module. The 4.3” display module code is essentially the
same, but with a different QtQuick version, and different X/Y locations for the GUI elements.

import QtQuick 2.0

import "components"

Rectangle {

 id: page

 width: 800

 height: 480

 ImageButton {

 id: start_button

 x: 343

 y: 135

 width: 60

 height: 40

 text: "Start"

 imageUp: "images/internal_button_up.bmp"

 font.pixelSize: 18

 textColor: "#000000"

 imageDown: "images/internal_button_dn.bmp"

 font.bold: false

 font.family: "Arial"

 onButtonPress: {

// oil.on=true

 connection.sendMessage("Start.state=1")

 }

 onButtonRelease: {

 connection.sendMessage("Start.state=0")

 }

 }

 ImageButton {

 id: stop_button

 x: 343

 y: 305

 width: 60

 height: 40

 text: "Stop"

 imageUp: "images/internal_button_up.bmp"

 font.pixelSize: 18

 textColor: "#000000"

 imageDown: "images/internal_button_dn.bmp"

 font.bold: false

Application Note: AN-121 01/28/2016 Page 11 of 13

 font.family: "Arial"

 onButtonPress: {

// oil.on=false

 connection.sendMessage("Stop.state=1")

 }

 onButtonRelease: {

 connection.sendMessage("Stop.state=0")

 }

 }

 LEDLight {

 id: oil_led

 objectName: "oil"

 x: 272

 y: 191

 width: 202

 height: 99

 on: false

 font.pixelSize: 12

 textColor: "#000000"

 textPosition: "bottom"

 label: "OIL"

 fieldSpacing: 4

 font.bold: false

 font.family: "Arial"

 imageOff: "images/ledoff.png"

 imageOn: "images/ledon.png"

 }

 VerticalLevelIndicator {

 id: water_level

 objectName: "water"

 x: 116

 y: 156

 width: 28

 height: 161

 minValue: 0

 hintFontPixelSize: 14

 imageBase: "images/level.png"

 hintFontColor: "#000000"

 value: 0

 showHint: true

 imageOverlay: "images/level_overlay.png"

 maxValue: 18

 increment: 9

 startPosition: "bottom"

 hintFontFamily: "Arial"

 }

 VerticalLevelIndicator {

 id: fuel_level

 objectName: "fuel"

 x: 164

 y: 156

 width: 28

 height: 161

Application Note: AN-121 01/28/2016 Page 12 of 13

 minValue: 0

 hintFontPixelSize: 14

 imageBase: "images/level.png"

 hintFontColor: "#000000"

 value: 0

 showHint: true

 imageOverlay: "images/level_overlay.png"

 maxValue: 18

 increment: 9

 startPosition: "bottom"

 hintFontFamily: "Arial"

 }

 VerticalLevelIndicator {

 id: temp_level

 objectName: "temp"

 x: 212

 y: 156

 width: 28

 height: 161

 minValue: 0

 hintFontPixelSize: 14

 imageBase: "images/level.png"

 hintFontColor: "#000000"

 value: 0

 showHint: true

 imageOverlay: "images/level_overlay.png"

 maxValue: 18

 increment: 9

 startPosition: "bottom"

 hintFontFamily: "Arial"

 }

 Text {

 id: text1

 x: 114

 y: 136

 text: qsTr("Water")

 horizontalAlignment: Text.AlignHCenter

 font.pixelSize: 12

 }

 Text {

 id: text2

 x: 162

 y: 136

 width: 33

 text: qsTr("Fuel")

 horizontalAlignment: Text.AlignHCenter

 font.pixelSize: 12

 }

 Text {

 id: text3

 x: 210

 y: 136

 width: 33

Application Note: AN-121 01/28/2016 Page 13 of 13

 text: qsTr("Temp")

 font.pixelSize: 12

 horizontalAlignment: Text.AlignHCenter

 }

 Speedometer {

 id: speedometer

 objectName: "speed"

 x: 490

 y: 136

 width: 210

 height: 210

 needleImage: "images/needle.png"

 overlayImageHeight: 105

 min: 0

 needleImageHeight: 63

 overlayImage: "images/overlay.png"

 value: 0

 needleImageWidth: 8

 max: 120

 needleRotationY: 65

 needleRotationX: 5

 maxAngle: 133

 overlayY: 18

 overlayImageWidth: 148

 overlayX: 21

 needleY: 33

 needleX: 98

 backgroundImage: "images/meterbackground.png"

 }

}

	1 Overview
	2 QML Application Screen
	3 Application Messages
	3.1 I/O Agent Messages
	3.2 TIO Messages
	3.3 QML Messages

	4 Example Message Flows
	4.1 Host Controller to Display Module
	4.2 Display Module to Host Controller

	5 Setup
	6 Initial Testing
	7 Building and Installing reach-eio-agent
	7.1 Building
	7.2 Installing
	7.3 Startup Scripts

	8 Final Testing
	9 Source Code
	9.1 QML Application

